Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.596
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38617829

RESUMO

Background: Spinocerebellar ataxia 21 (SCA21) is a rare neurological disorder caused by heterozygous variants in TMEM240. A growing, yet still limited number of reports suggested that hyperkinetic movements should be considered a defining component of the disease. Case Series: We describe two newly identified families harboring the recurrent pathogenic TMEM240 p.Pro170Leu variant. Both index patients and the mother of the first proband developed movement disorders, manifesting as myoclonic dystonia and action-induced dystonia without co-occurring ataxia in one case, and pancerebellar syndrome complicated by action-induced dystonia in the other. We reviewed the literature on TMEM240 variants linked to hyperkinetic disorders, comparing our cases to described phenotypes. Discussion: Adding to prior preliminary observations, our series highlights the relevance of hyperkinetic movements as clinically meaningful features of SCA21. TMEM240 mutation should be included in the differential diagnosis of myoclonic dystonia and ataxia-dystonia syndromes.


Assuntos
Distonia , Distúrbios Distônicos , Mioclonia , Degenerações Espinocerebelares , Humanos , Distonia/diagnóstico , Distonia/genética , Mioclonia/diagnóstico , Mioclonia/genética , Hipercinese , Ataxia , Doenças Raras , Síndrome , Proteínas de Membrana
3.
Medicina (Kaunas) ; 60(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38541088

RESUMO

Asterixis is a subtype of negative myoclonus characterized by brief, arrhythmic lapses of sustained posture due to involuntary pauses in muscle contraction. We performed a narrative review to characterize further asterixis regarding nomenclature, historical aspects, etiology, pathophysiology, classification, diagnosis, and treatment. Asterixis has been classically used as a synonym for negative myoclonus across the literature and in previous articles. However, it is important to distinguish asterixis from other subtypes of negative myoclonus, for example, epileptic negative myoclonus, because management could change. Asterixis is not specific to any pathophysiological process, but it is more commonly reported in hepatic encephalopathy, renal and respiratory failure, cerebrovascular diseases, as well as associated with drugs that could potentially lead to hyperammonemia, such as valproic acid, carbamazepine, and phenytoin. Asterixis is usually asymptomatic and not spontaneously reported by patients. This highlights the importance of actively searching for this sign in the physical exam of encephalopathic patients because it could indicate an underlying toxic or metabolic cause. Asterixis is usually reversible upon treatment of the underlying cause.


Assuntos
Encefalopatias , Discinesias , Mioclonia , Humanos , Mioclonia/diagnóstico , Tremor/diagnóstico , Tremor/etiologia , Carbamazepina/uso terapêutico
6.
Artigo em Inglês | MEDLINE | ID: mdl-38434714

RESUMO

Background: A wide variety of associated movement disorders has been described in multiple sclerosis. Phenomenology Shown: A 57-year-old woman with primary progressive multiple sclerosis developed spinal segmental myoclonus associated with focal myelitis. Educational Value: Movement disorders in multiple sclerosis are phenomenologically diverse and have varied pathophysiological mechanisms, making it essential to identify them to initiate appropriate treatment.


Assuntos
Transtornos dos Movimentos , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Mioclonia , Doenças da Medula Espinal , Feminino , Humanos , Pessoa de Meia-Idade , Mioclonia/tratamento farmacológico , Mioclonia/etiologia , Esclerose Múltipla/complicações , Esclerose Múltipla Crônica Progressiva/complicações , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico
7.
Genes (Basel) ; 15(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38397161

RESUMO

The progressive myoclonus epilepsies (PME) are a diverse group of disorders that feature both myoclonus and seizures that worsen gradually over a variable timeframe. While each of the disorders is individually rare, they collectively make up a non-trivial portion of the complex epilepsy and myoclonus cases that are seen in tertiary care centers. The last decade has seen substantial progress in our understanding of the pathophysiology, diagnosis, prognosis, and, in select disorders, therapies of these diseases. In this scoping review, we examine English language publications from the past decade that address diagnostic, phenotypic, and therapeutic advances in all PMEs. We then highlight the major lessons that have been learned and point out avenues for future investigation that seem promising.


Assuntos
Epilepsias Mioclônicas Progressivas , Mioclonia , Humanos , Epilepsias Mioclônicas Progressivas/diagnóstico , Epilepsias Mioclônicas Progressivas/genética , Epilepsias Mioclônicas Progressivas/terapia
8.
Mov Disord ; 39(4): 674-683, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38385661

RESUMO

INTRODUCTION: Negative myoclonus (NM) is an involuntary movement caused by a sudden interruption of muscular activity, resulting in gait problems and falls. OBJECTIVE: To establish frequency, clinical impact, and neurophysiology of NM in progressive myoclonus ataxia (PMA) patients. METHODS: Clinical, neurophysiological, and genetic data of 14 PMA individuals from University Medical Centre Groningen (UMCG) Expertise Center Movement Disorder Groningen were retrospectively collected. Neurophysiological examination included video-electromyography-accelerometry assessment in all patients and electroencephalography (EEG) examination in 13 individuals. Jerk-locked (or silent period-locked) back-averaging and cortico-muscular coherence (CMC) analysis aided the classification of myoclonus. RESULTS: NM was present in 6 (NM+) and absent in 8 (NM-) PMA patients. NM+ individuals have more frequent falls (100% vs. 37.5%) and higher scores on the Gross Motor Function Classification System (GMFCS) (4.3 ±0.74 vs. 2.5 ±1.2) than NM- individuals. Genetic background of NM+ included GOSR2 and SEMA6B, while that of NM- included ATM, KCNC3, NUS1, STPBN2, and GOSR2. NM was frequently preceded by positive myoclonus (PM) and silent-period length was between 88 and 194 ms. EEG epileptiform discharges were associated with NM in 2 cases. PM was classified as cortical in 5 NM+ and 2 NM- through EEG inspection, jerk-locked back-averaging, or CMC analysis. DISCUSSION: Neurophysiological examination is crucial for detecting NM that could be missed on clinical examination due to a preceding PM. Evidence points to a cortical origin of NM, an association with more severe motor phenotype, and suggests the presence of genetic disorders causing either a PMA or progressive myoclonus epilepsy, rather than pure PMA phenotype. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Eletroencefalografia , Eletromiografia , Mioclonia , Proteínas Qb-SNARE , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Eletroencefalografia/métodos , Adulto , Mioclonia/fisiopatologia , Mioclonia/diagnóstico , Estudos Retrospectivos , Idoso , Ataxia/fisiopatologia
9.
Epilepsia Open ; 9(2): 486-500, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38334331

RESUMO

Myoclonus classically presents as a brief (10-50 ms duration), non-rhythmic jerk movement. The etiology could vary considerably ranging from self-limited to chronic or even progressive disorders, the latter falling into encephalopathic pictures that need a prompt diagnosis. Beyond the etiological classification, others evaluate myoclonus' body distribution (i.e., clinical classification) or the location of the generator (i.e., neurophysiological classification); particularly, knowing the anatomical source of myoclonus gives inputs on the observable clinical patterns, such as EMG bursts duration or EEG correlate, and guides the therapeutic choices. Among all the chronic disorders, myoclonus often presents itself as a manifestation of epilepsy. In this context, myoclonus has many facets. Myoclonus occurs as one, or the only, seizure manifestation while it can also present as a peculiar type of movement disorder; moreover, its electroclinical features within specific genetically determined epileptic syndromes have seldom been investigated. In this review, following a meeting of recognized experts, we provide an up-to-date overview of the neurophysiology and nosology surrounding myoclonus. Through the dedicated exploration of epileptic syndromes, coupled with pragmatic guidance, we aim to furnish clinicians and researchers alike with practical advice for heightened diagnostic management and refined treatment strategies. PLAIN LANGUAGE SUMMARY: In this work, we described myoclonus, a movement characterized by brief, shock-like jerks. Myoclonus could be present in different diseases and its correct diagnosis helps treatment.


Assuntos
Epilepsia , Síndromes Epilépticas , Transtornos dos Movimentos , Mioclonia , Humanos , Mioclonia/diagnóstico , Mioclonia/terapia , Mioclonia/etiologia , Diagnóstico Diferencial , Epilepsia/complicações , Síndromes Epilépticas/complicações
12.
Mov Disord Clin Pract ; 11(1): 76-85, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38291835

RESUMO

BACKGROUND: Variants in dehydrodolichol diphosphate synthetase (DHDDS) and nuclear undecaprenyl pyrophosphate synthase 1 (NUS1) cause a neurodevelopmental disorder, classically with prominent epilepsy. Recent reports suggest a complex movement disorder and an overlapping phenotype has been postulated due to their combined role in dolichol synthesis. CASES: We describe three patients with heterozygous variants in DHDDS and five with variants affecting NUS1. They bear a remarkably similar phenotype of a movement disorder dominated by multifocal myoclonus. Diagnostic clues include myoclonus exacerbated by action and facial involvement, and slowly progressive or stable, gait ataxia with disproportionately impaired tandem gait. Myoclonus is confirmed with neurophysiology, including EMG of facial muscles. LITERATURE REVIEW: Ninety-eight reports of heterozygous variants in DHDDS, NUS1 and chromosome 6q22.1 structural alterations spanning NUS1, confirm the convergent phenotype of hypotonia at birth, developmental delay, multifocal myoclonus, ataxia, dystonia and later parkinsonism with or without generalized epilepsy. Other features include periodic exacerbations, stereotypies, anxiety, and dysmorphisms. Although their gene products contribute to dolichol biosynthesis, a key step in N-glycosylation, transferrin isoform profiles are typically normal. Imaging is normal or non-specific. CONCLUSIONS: Recognition of their shared phenotype may expedite diagnosis through chromosomal microarray and by including DHDDS/NUS1 in movement disorder gene panels.


Assuntos
Transtornos dos Movimentos , Mioclonia , Recém-Nascido , Humanos , Difosfatos , Fenótipo , Ataxia , Dolicóis/metabolismo , Receptores de Superfície Celular
14.
Laryngoscope ; 134(1): 397-399, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37161907

RESUMO

The work describes a case of palatal myoclonus with distressing tinnitus in a 9-year-old boy and its successful treatment with injections of botulinum toxin. This case report discusses common questions about myoclonic-induced clicking tinnitus and provides answers. Laryngoscope, 134:397-399, 2024.


Assuntos
Toxinas Botulínicas , Mioclonia , Zumbido , Masculino , Humanos , Criança , Zumbido/etiologia , Zumbido/tratamento farmacológico , Mioclonia/complicações , Mioclonia/diagnóstico , Toxinas Botulínicas/uso terapêutico , Palato Mole , Injeções/efeitos adversos , Músculos Palatinos
16.
Int J Toxicol ; 43(2): 123-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38063479

RESUMO

When conducting toxicology studies, the interpretation of drug-related neurological clinical signs such as convulsions, myoclonus/myoclonic jerks, tremors, ataxia, and salivation requires an understanding of the spontaneous incidence of those observations in commonly used laboratory animal species. The spontaneous incidence of central nervous system clinical signs in control animals from a single facility using cage-side observations or high definition video monitoring was retrospectively analyzed. Spontaneous convulsions were observed at low incidence in Beagle dogs and Sprague-Dawley rats but were not identified in cynomolgus monkeys and Göttingen minipigs. Spontaneous myoclonic jerks and muscle twitches were observed at low incidence in Beagle dogs, cynomolgus monkeys, and Sprague-Dawley rats but were not seen in Göttingen minipigs. Spontaneous ataxia/incoordination was identified in all species and generally with a higher incidence when using video monitoring. Salivation and tremors were the two most frequent spontaneous clinical signs and both were observed in all species. Data from the current study unveil potential limitations when using control data obtained from a single study for toxicology interpretation related to low incidence neurological clinical signs while providing historical control data from Beagle dogs, cynomolgus monkeys, Sprague-Dawley rats, and Göttingen minipigs.


Assuntos
Mioclonia , Ratos , Suínos , Animais , Cães , Ratos Sprague-Dawley , Porco Miniatura , Estudos Retrospectivos , Macaca fascicularis , Tremor/induzido quimicamente , Incidência , Convulsões , Ataxia
19.
Wien Med Wochenschr ; 174(1-2): 30-34, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37523107

RESUMO

BACKGROUND: In accordance with the rising number of SARS-CoV­2 infections, reports of neurological complications have also increased. They include cerebrovascular diseases but also immunological diseases such as Guillain-Barre syndrome (GBS), Miller-Fisher syndrome (MFS), and opsoclonus-myoclonus-ataxia syndrome (OMAS). While GBS and MFS are typical postinfectious complications, OMAS has only recently been described in the context of COVID-19. GBS, MFS, and OMAS can occur as para- and postinfectious, with different underlying pathomechanisms depending on the time of neurological symptom onset. The study aimed to describe clinical features, time between infection and onset of neurological symptoms, and outcome for these diseases. METHODS: All COVID-19 patients treated in the neurological ward between January 2020 and December 2022 were screened for GBS, MFS, and OMAS. The clinical features of all patients, with a particular focus on the time of onset of neurological symptoms, were analyzed. RESULTS: This case series included 12 patients (7 GBS, 2 MFS, 3 OMAS). All GBS and one MFS patient received immunomodulatory treatment. Three patients (2 GBS, 1 OMAS) had a severe COVID-19 infection and received mechanical ventilation. In patients with OMAS, only one patient received treatment with intravenous immunoglobulin and cortisone. The remaining two patients, both with disease onset concurrent with SARS-COV­2 infection, recovered swiftly without treatment. In all subgroups, patients with concurrent onset of neurological symptoms and COVID-19 infection showed a trend toward shorter disease duration. CONCLUSION: All patient groups displayed a shorter disease duration if the onset of neurological symptoms occurred shortly after the COVID-19 diagnosis. In particular, both the OMAS patients with symptom onset concurrent with COVID-19 showed only abortive symptoms followed by a swift recovery. This observation would suggest different pathomechanisms for immune-mediated diseases depending on the time of onset after an infection.


Assuntos
COVID-19 , Síndrome de Guillain-Barré , Síndrome de Miller Fisher , Mioclonia , Transtornos da Motilidade Ocular , Humanos , Síndrome de Guillain-Barré/diagnóstico , Síndrome de Guillain-Barré/terapia , Síndrome de Guillain-Barré/complicações , Estudos Retrospectivos , Teste para COVID-19 , Mioclonia/complicações , Transtornos da Motilidade Ocular/complicações , COVID-19/complicações , SARS-CoV-2 , Síndrome de Miller Fisher/diagnóstico , Síndrome de Miller Fisher/terapia , Síndrome de Miller Fisher/complicações , Ataxia/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...